Saturday, 29 April 2017

Educational Codeforces Round 20/B. Distances to Zero

B. Distances to Zero
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given the array of integer numbers a0, a1, ..., an - 1. For each element find the distance to the nearest zero (to the element which equals to zero). There is at least one zero element in the given array.
Input
The first line contains integer n (1 ≤ n ≤ 2·105) — length of the array a. The second line contains integer elements of the array separated by single spaces ( - 109 ≤ ai ≤ 109).
Output
Print the sequence d0, d1, ..., dn - 1, where di is the difference of indices between i and nearest j such that aj = 0. It is possible that i = j.
Examples
input
9
2 1 0 3 0 0 3 2 4
output
2 1 0 1 0 0 1 2 3 
input
5
0 1 2 3 4
output
0 1 2 3 4 
input
7
5 6 0 1 -2 3 4
output
2 1 0 1 2 3 4 
Solve:
#include<bits/stdc++.h>
using namespace std;

vector<long long>vec;
int main()
{
    long long n,i,c,j,a,in;
    while(cin >>n)
    {
        for(i=0; i<n; i++)
        {
            cin>>in;
            vec.push_back(in);
        }
        if(n==1)
            cout<<0;
        else
            for(i=0; i<n; i++)
            {

                c=1;
                //cout<<"f;kasj";
                if(i!=0)
                    cout<<" ";
                while(c<n)
                {

                    if(vec[i]==0)
                    {
                        cout<<0;
                        break;
                    }
                    else if(vec[i+c]==0&&i+c<n)
                    {
                        cout<<c;
                        break;
                    }
                    else if(vec[i-c]==0&&i-c>=0)
                    {
                        cout<<c;
                        break;
                    }
                    c++;
                }
            }
        cout<<endl;
    }
    return 0;
}

এই প্রবলেম টা যদি আমরা এভাবে সল্ভ করি তাহলে time limit হওয়ার সম্ভাবনা থাকে।
সে জন্য নিচের নিয়মে করতে হবে।
#include<bits/stdc++.h>
using namespace std;

int main()
{
    long long n,i,a,mn,c,cc;
    while(cin>>n)
    {
        vector<long long>vec,v;
        cc=0;
        for(i=0; i<n; i++)
        {
            cin>>a;
            vec.push_back(a);
            if(a==0)
            {
                v.push_back(i);
                cc++;
            }

        }
        c=0;
        for(i=0; i<n; i++)
        {
           // if(c+1<=cc)
             //   v.push_back(-9);
             //cout<<i<<" bbb "<<v[c]<<" nbn "<<v[c+1]<<endl;
             //if(v[c+1]!=0
            mn=min(abs(i-v[c]),abs(i-v[c+1]));
            cout<<mn;
            if(i==v[c+1])
                c++;
            if(i!=n-1)
                cout<<" ";
        }
        cout<<endl;
    }
    return 0;
}

Thursday, 27 April 2017

UVA 10004

Problem: Bicoloring
In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.
Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:
no node will have an edge to itself.
the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
the graph will be strongly connected. That is, there will be at least one path from any node to any other node.
Input
The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a (  ).
An input with n = 0 will mark the end of the input and is not to be processed.
Output
You have to decide whether the input graph can be bicolored or not, and print it as shown below.
Sample Input
3
3
0 1
1 2
2 0
9
8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0
Sample Output
NOT BICOLORABLE.
BICOLORABLE.

My accepted code :

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long n,m,i,a,b,visited[40009],color[40009],top,c,d,f,st;
    while(cin>>n>>m)
    {
        vector<long long> vec[209];
        for(i=0; i<m; i++)
        {
            cin>>a>>b;
            vec[a].push_back(b);
            vec[b].push_back(a);
        }
        long long start=0;
        queue<long long>q;
        memset(visited,0,sizeof visited);
        memset(color,0,sizeof color);
        visited[0]=1;
        q.push(start);
        c=0;
        color[start]=1;
        while(!q.empty())
        {
            top=q.front();
            cout<<top<<"->";
            q.pop();
            c++;
            if(color[top]==1)
                    d=2;
                else
                    d=1;
                    f=0;
            for(i=)
            {
                st=vec[it];
                cout<<"g"<<st<<endl;
                /*if(color[top]==color[st])
                {
                    f=1;
                    break;
                }
                if(visited[*it]==0)
                {
                    visited[*it]=1;
                    q.push(*it);
                    color[*it]=d;
                }*/
            }
        }
        c--;
       // cout<<n<<"   vbjmvnb "<<c<<endl;
        if(f==1)
            cout<<"NOT BICOLORABLE.\n";

        else
            cout<<"BICOLORABLE.\n";

    }
    return 0;
}